B13

NY

中华人民共和国农业行业标准

NY/T xxxx—xxxx

卫生杀虫剂健康风险评估指南第3部分:驱避剂

Guidance on Health Risk Assessment of Public Health Pesticides

Part 3: Repellent

(征求意见稿)

××××-××-××发布

××××-××-×**实施**

前言

NY/T XXXX《卫生杀虫剂健康风险评估指南》分为以下几部分:

- ——第1部分: 蚊香类产品;
- ——第2部分:气雾剂;
- ——第3部分:驱避剂。

本部分为《卫生杀虫剂健康风险评估指南》的第3部分。

本部分按照GB/T 1.1—2009给出的规划起草。

本部分由中华人民共和国农业部种植业管理司提出并归口。

本部分负责起草单位:农业部农药检定所。

本部分主要起草人:

卫生杀虫剂健康风险评估指南

第3部分:驱避剂

1 范围

本标准规定了驱避剂产品健康风险评估程序、方法和评价标准。

本标准适用于为驱避剂产品(包括驱蚊液、驱蚊花露水、驱蚊霜、驱蚊露、驱蚊乳等)登记 而进行的居民健康的风险评估。

2 术语和定义

下列术语和定义适用于本文件。

2.1

未观察到有害作用剂量水平 no observed adverse effect level,NOAEL

在规定的试验条件下,用现有技术手段或检测指标,未能观察到与染毒有关的有害效应的受 试物的最高剂量或浓度。

2.2

观察到有害作用最低剂量水平 lowest observed adverse effect level,LOAEL

在规定的实验条件下,用现有技术手段或检测指标,观察到与染毒有关的有害效应的受试物 最低剂量或浓度。

2.3

居民允许暴露量 acceptable residential exposure level,AREL

居民通过正常使用而暴露于某种驱避剂产品,不会对人体造成明显健康危害的量。

2.4

不确定系数 uncertainly factor, UF

在制定居民允许暴露量时,存在实验动物数据外推和数据质量等因素引起的不确定性,为了减少上述不确定性,一般将从实验动物毒性试验中得到的数据缩小一定的倍数得出 AREL,这种缩小的倍数即为不确定系数。

2.5

暴露量 exposure

居民在特定场景中通过不同途径接触驱避剂产品有效成分的量。

2.6

风险系数 risk quotient, RQ

暴露量与居民允许暴露量的比值。

3 评估概述

在综合评价毒理学数据的基础上,考虑实验动物和人的种间差异及人群的个体差异,运用不确定系数,推导居民因使用驱避剂产品,暴露于该产品的允许暴露量。

根据驱避剂产品理化参数,综合考虑居民使用习惯、人体参数等因素,计算居民使用驱避剂产品的实际暴露量。

风险系数(RQ),即暴露量与居民允许暴露量的比值,用于表征驱避剂产品对人体健康的风险。

风险评估可以采用分级评估的方式。初级风险评估采用较多的默认参数,评估结果更具保护性。当初级风险评估结果显示风险不可接受时,可以通过优化参数等方式开展更符合实际的高级风险评估,参数优化可以从危害评估和暴露评估两方面进行。在危害评估方面,可以通过获得更全面、可靠的毒理学数据,重新评价确定未观察到有害作用剂量水平,降低不确定系数,重新计算居民允许暴露量;在暴露评估方面,可以优化暴露量计算的相关参数或开展模拟测试,重新计算暴露量

本标准重点阐述驱避剂产品的初级风险评估方法。

4 评估方法

风险评估针对驱避剂产品的有效成分,毒理学数据的选择应与产品使用周期相符。鉴于成人和幼儿的行为习惯之间的差异,本标准对成人及幼儿分别进行风险评估。

4.1 危害评估

4.1.1 确定NOAEL

在分析评价相关毒理学资料的基础上,找到敏感动物的敏感终点,并且经过数据评价和统计 分析获得NOAEL。

4.1.1.1 全面评价毒性

根据提交的登记毒理学资料,对毒理学特征进行全面分析和评估,掌握全部毒性信息。在毒性评价过程中,要特别注意农药是否存在致突变性、繁殖和发育毒性、致癌性、神经毒性等特殊毒性效应。除登记资料外,还可参考其他资料,如国际上权威机构或组织的相关评价报告、公开发表的有关文献等。

4.1.1.2 判定敏感终点

一般情况下,可用于制定驱避剂产品AREL的资料为亚急(慢)性经口、经皮毒性试验等数据。 通过分析和评价,获得最敏感动物的最敏感终点。

4.1.1.3 确定NOAEL

根据敏感终点,选择最适合的试验,确定与制定农药AREL有关的NOAEL。选择确定NOAEL时应说明所使用的试验数据和敏感终点。

4.1.1.4 特殊情况

当缺乏某种特定途径的试验数据时,如经皮试验,可使用相应周期的经口毒性试验结果,通过途径间外推的方法获得某种特定途径的NOAEL,即经皮NOAEL可以用经口NOAEL除以透皮吸收率计算。当无法通过试验获得透皮吸收率时,透皮吸收率默认值为100%。

4.1.2 选择不确定系数

在推导AREL时,存在实验动物数据外推和数据质量等因素引起的不确定性,可采用不确定系数来减少上述不确定性。

不确定系数一般为100,即将实验动物的数据外推到一般人群(种间差异)以及从一般人群外推到敏感人群(种内差异)时所采用的系数。种间差异和种内差异的系数分别为10。

选择不确定系数时,除种间差异和种内差异外,还要考虑毒性资料的质量、可靠性、完整性、有害效应的性质以及实验条件与实际场景之间的匹配度等因素,再结合具体情况和有关资料,对不确定系数进行适当的放大或缩小。

选择不确定系数时,应针对具体情况进行分析和评估,并充分利用专家的经验。虽然存在多个不确定性因素,甚至在数据严重不足的情况下,不确定系数最大一般也不超过10000。推导AREL过程中的不确定性来源及系数见表1。

不确定性来源	系数
从实验动物外推到一般人群	1~10
从一般人群外推到敏感人群	1~10
从LOAEL到NOAEL	1~10
从亚急性试验推导到亚慢性试验	1~10
出现严重毒性	1~10
试验数据不完整	1~10

表1 推导AREL过程中的不确定性来源及系数

4.1.3计算AREL

确定NOAEL后,再除以适当的不确定系数,即可得到AREL。根据不同暴露途径的评估需要, 应分别计算经皮AREL以及经口AREL。

AREL计算公式按式(1)计算:

$$AREL = \frac{NOAEL}{UF} \dots (1)$$

式中:

AREL ——居民允许暴露量,单位为毫克每千克体重(mg/kg 体重);

NOAEL——未观察到有害作用剂量水平,单位为毫克每千克体重(mg/kg 体重); UF ——不确定系数。

4.2 暴露评估

4.2.1 确定主要影响因素

暴露量主要影响因素包括:

- a) 驱避剂产品的理化参数:包括有效成分、含量、保护时间等;
- b) 居民使用习惯,如每天使用次数、用药量,施用驱避剂部位的总面积等;

4.2.2 暴露量计算

施用驱避剂造成的"操作者"和"施药后"暴露并非完全独立的事件,因为很多情况下都是对自己施药。因此,操作时的经皮暴露与"施药后"经皮暴露可以放在一起考虑。目前,我国居民使用驱避剂常见方法为泵式喷雾和直接涂抹,由于施药过程短暂,且用做驱避剂产品的有效成分的蒸汽压通常较低,再经过室内外空气的稀释,其吸入暴露量远远低于经皮暴露量,所以一般情况下,施药时和施药后的吸入暴露可以忽略不计。由于幼儿有吸吮手指的习惯,施用驱避剂后,皮肤上残留的驱避剂可通过手至口转移方式被食入。

因此,按照暴露途径的不同,应分别计算经皮暴露量以及经口暴露量(仅对幼儿)。 主要计算参数见附录A。

4.2.2.1 经皮暴露量

经皮暴露量即为施用驱避剂产品后皮肤上的有效成分的量。本部分计算应考虑有效成分含量、 单位面积使用量、每天使用次数及施用驱避剂产品部位的体表面积。

经皮暴露量可按以下公式进行计算:

$$Exposure_{der} = \frac{AR_F \times F_{AI} \times N \times SA \times F_{Body}}{BW}$$
 (2)

式中:

Exposure_{der} ——经皮暴露量,单位为毫克每千克体重(mg/kg体重);

 AR_F — 特定剂型的用药量,单位为毫克每平方厘米(mg产品/ cm^2 皮肤);

FAI 特定产品的有效成分含量;

N ——每天使用次数,单位为次/天;

SA ——体表总面积,单位为平方厘米(cm²);

F_{Body} ——身体暴露比例,即体表暴露部分的面积/体表总面积;

BW ——体重,单位为千克(kg)。

4.2.2.2 经口暴露量

由于幼儿有吸吮手指的习惯,手部沾染的有效成分中的一部分会因此摄入到体内。本部分计 算理论上应考虑手部残留量、幼儿吸吮手指的频率、手的表面积以及唾液对手指上有效成分的提 取效率。

为确保在初级风险评估阶段保证居民的安全,我们认为可以选择现实中比较极端的情况,进行保守的评估。在最极端的情况下,幼儿将双手可入口部分残留的驱避剂产品全部经口摄入,手部可入口部分约为手部表面积的50%,则经口摄入量为幼儿单手涂抹驱避剂产品的量。

经口暴露量可按以下公式进行计算:

$$Exposure_{oral} = \frac{AR_F \times F_{AI} \times N \times SA_H}{BW}$$
 (3)

式中:

Exposure oral ——经口暴露量,单位为毫克每千克体重(mg/kg体重);

AR_F ——特定剂型的用药量,单位为毫克每平方厘米(mg 有效成分/cm²皮肤);

F_{AI} ——产品特定的有效成分含量;

N ——每天使用次数,单位为次/天;

SA_H ——每只手的典型表面积,单位为平方厘米(cm²);

BW ——体重,单位为公斤(kg)。

4.3 风险表征

4.3.1 风险系数(RQ)的计算

风险系数(RQ)按式(4)计算。

$$RQ = \frac{Exposure}{AREL} \tag{4}$$

式中:

RQ ——风险系数;

Exposure ——暴露量,单位为毫克每千克体重(mg/kg 体重);

AREL ——居民允许暴露量,单位为毫克每千克体重(mg/kg 体重)。

4.3.2 风险表征

应分别计算成人经皮风险系数,以及幼儿经皮、经口风险系数,最后以加和的方式分别计算成人及幼儿的综合风险系数。即:

$$RQ = RQ_{\text{der}} + RQ_{oral}$$
 (5)

式中:

RQ_{der}——经皮暴露风险系数;

RQ_{oral}——经口暴露风险系数。

若综合风险系数≤1,即暴露量小于或等于居民允许暴露量,则风险可接受;若综合风险系数>1,则风险不可接受。

如产品中存在 2 个以上有效成分,且毒理学作用机制相似,应以加和的方式计算混剂的风险 系数。

附录 A

(规范性附录)

主要参数表

	参数名		推荐值	
产品	有效成分含量		百分含量,以标签标注为准	
成人	体重		60.6kg	
	体表面积		1.6m ²	
幼儿	体重		11.2kg	
	体表面积		$0.52m^2$	
	单手表面积		150cm ²	
使用习惯	使用频率		通常认为使用频率为 1 次/天;如产品的保护	
			时间低于 4 小时,则需根据实际使用情况确	
			定使用频率	
	身体暴露比例		37%	
	用药量 ├	泵式喷雾	0.75mg 产品/cm ²	
		涂抹	0.53mg 产品/cm ²	